呵呵呵呵呵

萝莉有三好,柔体 轻音 易推倒。女神有三宝,干嘛 呵呵 去洗澡。宅男有三好:Dota 基友 破电脑。


Linux下获取毫秒纳秒时间精度的深入分析

Linux下获取毫秒纳秒时间精度的深入分析

Linux下获取时间有以下几个函数:

一)ANSI clock函数
1)概述:
clock 函数的返回值类型是clock_t,它除以CLOCKS_PER_SEC来得出时间,一般用两次clock函数来计算进程自身运行的时间.

ANSI clock有三个问题:
1)如果超过一个小时,将要导致溢出.
2)函数clock没有考虑CPU被子进程使用的情况.
3)也不能区分用户空间和内核空间.

所以clock函数在linux系统上变得没有意义.
二)times()时间函数
原型如下:
clock_t times(struct tms *buf);

tms结构体如下:
strace tms{
 clock_t tms_utime;
 clock_t tms_stime;
 clock_t tms_cutime;
 clock_t tms_cstime;
}

注释:
tms_utime记录的是进程执行用户代码的时间.
tms_stime记录的是进程执行内核代码的时间.
tms_cutime记录的是子进程执行用户代码的时间.
tms_cstime记录的是子进程执行内核代码的时间.
三)实时函数clock_gettime
在POSIX1003.1中增添了这个函数,它的原型如下:
int clock_gettime(clockid_t clk_id, struct timespec *tp);

它有以下的特点:
1)它也有一个时间结构体:timespec ,timespec计算时间次数的单位是十亿分之一秒.
strace timespec{
 time_t tv_sec;
 long tv_nsec;
}

2)clockid_t是确定哪个时钟类型.

CLOCK_REALTIME: 标准POSIX实时时钟
CLOCK_MONOTONIC: POSIX时钟,以恒定速率运行;不会复位和调整,它的取值和CLOCK_REALTIME是一样的.
CLOCK_PROCESS_CPUTIME_ID和CLOCK_THREAD_CPUTIME_ID是CPU中的硬件计时器中实现的.
四)时间函数gettimeofday()
1)概述:
gettimeofday()可以获得当前系统的时间,是一个绝对值

原型如下:
int gettimeofday ( struct timeval * tv , struct timezone * tz )

timeval结型体的原型如下:
struct timeval {
               time_t      tv_sec;     /* seconds */
               suseconds_t tv_usec;    /* microseconds */
           };

所以它可以精确到微秒

五)四种时间函数的比较

1)精确度比较:

以下是各种精确度的类型转换:
1秒=1000毫秒(ms), 1毫秒=1/1000秒(s);
1秒=1000000 微秒(μs), 1微秒=1/1000000秒(s);
1秒=1000000000 纳秒(ns),1纳秒=1/1000000000秒(s);


2)
clock()函数的精确度是10毫秒(ms)
times()函数的精确度是10毫秒(ms)
gettimofday()函数的精确度是微秒(μs)
clock_gettime()函数的计量单位为十亿分之一,也就是纳秒(ns)

六)内核时钟

默认的Linux时钟周期是100HZ,而现在最新的内核时钟周期默认为250HZ.
如何得到内核的时钟周期呢?
grep ^CONFIG_HZ /boot/config-2.6.26-1-xen-amd64

CONFIG_HZ_250=y
CONFIG_HZ=250

结果就是250HZ.

而用sysconf(_SC_CLK_TCK);得到的却是100HZ

内核的标准时间是jiffy,一个jiffy就是一个内部时钟周期,而内部时钟周期是由250HZ的频率所产生中的,也就是一个时钟滴答,间隔时间是4毫秒(ms).

也就是说:
1个jiffy=1个内部时钟周期=250HZ=1个时钟滴答=4毫秒

每经过一个时钟滴答就会调用一次时钟中断处理程序,处理程序用jiffy来累计时钟滴答数,每发生一次时钟中断就增1.
而每个中断之后,系统通过调度程序跟据时间片选择是否要进程继续运行,或让进程进入就绪状态.

最后需要说明的是每个操作系统的时钟滴答频率都是不一样的,LINUX可以选择(100,250,1000)HZ,而DOS的频率是55HZ.

 

七)为应用程序计时

用time程序可以监视任何命令或脚本占用CPU的情况.

1)bash内置命令time
例如:
time sleep 1

real    0m1.016s
user    0m0.000s
sys     0m0.004s


2)/usr/bin/time的一般命令行
例如:
/time sleep 1
0.00user 0.00system 0:01.01elapsed 0%CPU (0avgtext+0avgdata 0maxresident)k
0inputs+0outputs (1major+176minor)pagefaults 0swaps

注:
在命令前加上斜杠可以绕过内部命令.
/usr/bin/time还可以加上-v看到更具体的输出:
/time -v sleep 1
        Command being timed: "sleep 1"
        User time (seconds): 0.00
        System time (seconds): 0.00
        Percent of CPU this job got: 0%
        Elapsed (wall clock) time (h:mm:ss or m:ss): 0:01.00
        Average shared text size (kbytes): 0
        Average unshared data size (kbytes): 0
        Average stack size (kbytes): 0
        Average total size (kbytes): 0
        Maximum resident set size (kbytes): 0
        Average resident set size (kbytes): 0
        Major (requiring I/O) page faults: 0
        Minor (reclaiming a frame) page faults: 178
        Voluntary context switches: 2
        Involuntary context switches: 0
        Swaps: 0
        File system inputs: 0
        File system outputs: 0
        Socket messages sent: 0
        Socket messages received: 0
        Signals delivered: 0
        Page size (bytes): 4096
        Exit status: 0
      
这里的输出更多来源于结构体rusage.

最后,我们看到real time大于user time和sys time的总和,这说明进程不是在系统调用中阻塞,就是得不到运行的机会.
而sleep()的运用,也说明了这一点.

注:

千分之一秒叫毫秒(millisecond,ms);
千分之一毫秒叫微秒(micro-second,us);
千分之一微秒叫纳秒(nanosecond,ns);
千分之一纳秒叫皮秒(picosecond,ps);

1G的cpu一个时钟周期用时是1纳秒。
    

更多内容:

BCB获取CPU的时钟周期数RDTSC的方法
通过机器指令RDTSC读取TSC时间戳代码
linux中使用getrusage获取系统资源的占用信息
fopen mode中a与a+区别
linux ubuntu下解压缩tar.xz文件

本文链接地址:http://www.hehehehehe.cn/i/818.html